\"如何分析真实世界研究数据\"系列(13) 真实世界研究最大的挑战是研究遇到混杂偏倚的强力挑战,无论哪个项目必须直面混杂因素、控制混杂偏倚、实现真实推断因果关系。关于混杂因素与混杂偏倚的概念也是分析真实世界研究数据必须掌握的知识点。本文做详细系统地论述。 统计学为流行病学服务,包括临床流行病学、公共卫生的流行病学、甚至包括基础的动物研究,其目标是推断研究因素(暴露因素、处理因素或临床治疗因素)与结局(是否死亡、有效、发病)的真实关系,并基于理论探讨两者是否存在着因果关系。 整个统计学过程,必须接受一系列考验,去伪存真,最终得到真相。上述主要包括排除机遇关联、排除虚假关联、排除非因果关联等三个方面,除了一点(排除机遇关联)之外,其他都有流行病学的偏倚有关,而统计学在其中发挥重要作用的是混杂偏倚。 1. 什么是偏倚医学研究是抽样研究,据样本推断总体,获得总体上研究因素与结局的关系。但是整个推断过程中会由于各种原因导致“总体上研究因素与结局的关系”的失真,这一失真现象,称之为偏倚。 诸位,特别是理科生,应该都学习过误差的概念。误差包括随机误差和系统误差。随机误差是由于个体变异、抽样或者不可知原因造成的随机性的误差,是无法杜绝的。而系统误差是人为或者测量方法引起方向性的错误,是可以控制甚至是杜绝的。 偏倚就是一类系统误差,是导致结果失真的错误,它是医学研究普遍存在,但必须想办法遏制在最低水平的一类错误。 它包括选择偏倚、信息偏倚与混杂偏倚三类 选择偏倚 由于选入的研究对象与未选入的研究对象在某些特征上存在差异而引起的误差。常发生在设计阶段。 信息偏倚 又称测量偏倚、观察偏倚。是在收集信息过程中由于测量暴露与结局的方法有缺陷,使采集到的信息不准确,从而引起偏倚。错分是测量不准确导致的最直接的结果。 混杂偏倚 研究某个因素与某种疾病的关联时,由于某个既与疾病有制约关系,又与所研究的暴露因素有联系的外来因素的影响,掩盖或夸大了所研究的暴露因素与疾病的联系特点:不易识别,不易确定,需认真细致地去解决控制方法: 无论何种研究,都可能遇到上述三种类型的偏倚,我们以RCT研究为例。我们都知道RCT研究是临床研究证据可靠性最强的一类研究。为什么? RCT研究最大的优点,或者被认为可靠性最强,因为它是混杂偏倚最小。 但是RCT研究也会受到信息偏倚的影响,在测量指标上容易受到人为主观的影响,因此,RCT研究有一个措施来应对,盲法原则,患者、测量者者甚至统计分析人员都不能知道谁是处理组,谁是对照组。 RCT研究最大的问题是选择偏倚。现在RCT研究越来越被人质疑,是因为它在人群选择上,太挑了,总是挑一些比较单一、标准严格限定、特征差异性小的一些病人(这样容易得到阳性结果),但是这样的人群却没有代表性!因此近十年来才不断有人呼吁,用真实世界研究来代替一部分RCT研究。RCT研究结果没法真正代表广大的总体人群,所以往往很多药物在临床试验是有效的,但是真正开展使用时,效果就不突出。对于这点,RCT的相应补救措施是多中心临床研究、大样本人群研究,但还是无法完全避免选择偏倚。 2. 混杂偏倚与混杂因素 混杂偏倚是指暴露因素与疾病发生或者疾病结局的相关(关联)程度受到其他因素(混杂因素)的歪曲或干扰。 比如,观察性研究某药物(X)的治疗肿瘤的效果(Z),由于非随机,药物(X)的使用还受到患者人口学、社会、经济因素(C)的影响。
上一篇:助推我省肿瘤基础和临床研究!近500名肿瘤领域 下一篇:独家融资 | 药物临床研究服务公司“熙华检测”
|